The subject of *Diophantine Approximation* concerns approximating real numbers with rational numbers. One way to do this is with *Farey fractions*—which we can generate by adding "wrong." However, there is a much simpler way to generate Farey fractions. One goal is to show these two methods give the same sequences.

1 First definition of Farey sequences

Definition 1. The N^{th} Farey sequence is the list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to N when written as a reduced fraction. We write this sequence as \mathcal{F}_N .

The first three Farey sequences are:

$$\mathcal{F}_{1} = \left\{ \frac{0}{1}, \frac{1}{1} \right\},$$
$$\mathcal{F}_{2} = \left\{ \frac{0}{1}, \frac{1}{2}, \frac{1}{1} \right\},$$
$$\mathcal{F}_{3} = \left\{ \frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1} \right\}$$

1. Write out $\mathcal{F}_4, \mathcal{F}_5, \mathcal{F}_6$. Before reading beyond this first question, make as many observations about the Farey sequences as you can-you do not need to prove any of them. How can you find the elements of \mathcal{F}_6 just knowing \mathcal{F}_5 ? Are there any patterns? List all the observations you make and patterns you discover. How many numbers are in \mathcal{F}_N ? There is not a nice formula for this number, but we can find a formula using the *Euler phi function*, $\phi(n)$, which is the number of positive integers less than or equal to n and do not share any common factors with n. For example, $\phi(9) = 6$ since there are exactly six numbers in the range from 1 to 9 that do not share any common factors with 9: 1, 2, 4, 5, 7, 8.

2. Find $\phi(n)$ for n from 1 to 10.

As an interesting aside, it is not known whether every possible value of $\phi(n)$ occurs at least twice. It is known that $\phi(n)$ is never 3.

Lemma 1. For a positive integer $N \ge 2$, the number of elements of \mathcal{F}_N with denominator N is equal to $\phi(N)$.

3. Why is this lemma true? Use this to write a formula for the number of elements of \mathcal{F}_N in terms of the Euler ϕ function.