The subject of Diophantine Approximation concerns approximating real numbers with rational numbers. One way to do this is with Farey fractions-which we can generate by adding "wrong."

1 Definition of Farey sequences

One way to generate the Farey sequence is using a table. In the first row, write $\frac{0}{1}$ and $\frac{1}{1}$.
To form the second row, copy the first row. Then insert $\frac{0+1}{1+1}$ between $\frac{0}{1}$ and $\frac{1}{1}$.
To form the $n^{\text {th }}$ row, copy the $(n-1)^{\text {st }}$ row. Then for each $\frac{a}{b}, \frac{c}{d}$ in the $(n-1)$ row, if $b+d \leq n$, insert $\frac{a+c}{b+d}$ between $\frac{a}{b}$ and $\frac{c}{d}$.

1. Here are the first four rows. Notice that the Here are the first four rows. Notice that the we did not include any values between $\frac{1}{3}$ and $\frac{1}{2}$ in row 4 , since $2+3>4$.
Fill in rows 5 and 6

Theorem 1. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive fractions in the $n^{\text {th }}$ row of the table, with $\frac{a}{b}$ to the left of $\frac{c}{d}$, then $b c-a d=1$.
2. The goal of the this question is to prove the theorem. We will do this using a technique called induction. First, we will show this is true for the first row. Then, we will show that if the theorem is true for the $(n-1)^{\text {st }}$ row, it is also true for the $n^{\text {th }}$ row.
(a) Show that the theorem is true for the first row.
(b) Assume that for every pair of consecutive $\frac{a}{b}$ and $\frac{c}{d}$ in the $(n-1)^{s t}$ row of the table, $a d-b c=1$. Now, for a specific pair $\frac{a}{b}, \frac{c}{d}$ in the $(n-1)^{s t}$ row, there are two cases for the $n^{\text {th }}$ row. What are they?
(c) For each of the two cases, show that the theorem is true.

Solution:

(a) There are only two elements of the first row. $1(1)-0(1)=1$.
(b) If $b+d \leq n$, then we insert $\frac{a+c}{b+d}$ in between $\frac{a}{b}$ and $\frac{c}{d}$. Otherwise, $\frac{a}{b}$ and $\frac{c}{d}$ are also consecutive in the $n^{\text {th }}$ row.
(c) If $b+d \leq n$, then we need to check the pairs $\frac{a}{b}, \frac{a+b}{b+d}$ and $\frac{a+b}{b+d}, \frac{c}{d}$. Now

$$
b(a+c)-a(b+d)=b c-a d,
$$

which is 1 by assumption. Similarly,

$$
c(b+d)-d(a+b)=b c-a d
$$

In the other case, $b c-a d=1$ by assumption.

Here are two corollaries and a theorem that you do not have to prove:
Corollary 2. Every $\frac{a}{b}$ in the table is in reduced form.
Corollary 3. The fractions in each row are listed in order from smallest to largest.
Theorem 4. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive fractions in any row, and $\frac{r}{s}$ is any rational number where $\frac{a}{b}<\frac{r}{s}<\frac{c}{d}$, then the smallest possible denominator for $\frac{r}{s}$ is $b+d$ and $\frac{a+c}{b+d}$ is the only one with this denominator.
3. Use the induction and Theorem 4 to show:

Theorem 5. If $0 \leq m \leq n$ and m and n have no common factors, the fraction $\frac{m}{n}$ is in the $n^{\text {th }}$ row of the table. Therefore, this table is equivalent to the definition: The $N^{\text {th }}$ Farey sequence is the list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to N when written as a reduced fraction.
(a) Show that the theorem is true for the first row.
(b) The rule for adding an element to the table is: for each $\frac{a}{b}, \frac{c}{d}$ in the $(n-1)$ row, if $b+d \leq n$, insert $\frac{a+c}{b+d}$ between $\frac{a}{b}$ and $\frac{c}{d}$. We call $\frac{a+c}{b+d}$ the mediant of $\frac{a}{b}$ and $\frac{c}{d}$.
Assume Theorem 5 is true for the $(n-1)^{s t}$ row. That is, the $(n-1)^{s t}$ row is a list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to $n-1$ when written as a reduced fraction. How can this simplify the rule for adding an element to the table?
(c) If $b+d>n, \frac{a+c}{b+d}$ is not in the $n^{\text {th }}$ row of the table. Now we just need to prove that every fraction $\frac{m}{n}$ where m and n have no common factors is in the $n^{t h}$ row of the table. Do this.

Solution:

(a) The first row of the table is $\left\{\frac{0}{1}, \frac{1}{1}\right\}$, which is all fractions between 0 and 1 with denominator 1.
(b) Assume that the $(n-1)^{\text {st }}$ row is a list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to $n-1$ when written as a reduced fraction.

Let $\frac{a}{b}$ and $\frac{c}{d}$ be consecutive fractions in the $(n-1)^{\text {st }}$ row. If $b+d<n$, it is already in the table by assumption. So we only need $b+d=n$.
(c) Since $\frac{m}{n}$ is not in the $(n-1)^{\text {st }}$ row, it is between two consecutive Farey fractions $\frac{a}{b}$ and $\frac{c}{d}$. By Theorem 4, the smallest possible denominator for fractions between $\frac{a}{b}$ and $\frac{c}{d}$ is $b+d$ and $\frac{a+c}{b+d}$ is the only one with this denominator. Since $\frac{a+c}{b+d}$ is not in the $(n-1)^{s t}$ row, $b+d \geq n$. Since $\frac{a}{b} \frac{m}{n}<\frac{c}{d}, n \geq b+d$. Thus, $b+d=n$ and $\frac{m}{n}=\frac{a+c}{b+d}$. Thus, $\frac{m}{n}$ is in the $n^{t h}$ row.
4. Let $\frac{a}{b}$ and $\frac{c}{d}$ be the fractions immediately to the left and right of $\frac{1}{2}$ in the $n^{\text {th }}$ Farey sequence. Prove that $b=d$ is the greatest odd integer less than or equal to n. Also prove $a+c=b$.

Solution: This is true for the second row $\left\{\frac{0}{1}, \frac{1}{2}, \frac{1}{1}\right\}$.
Assume this is true for the $(n-1)^{s t}$ row. If $n-1$ is odd, then $\frac{a}{b} \leq 12 \frac{c}{d}$ and $b=d=n-1$. By Theorem $4, b+2=d+2=n+1$ is the smallest possible denominator for fractions between $\frac{a}{b}$ and $\frac{1}{2}$ and between $\frac{1}{2}$ and $\frac{c}{d}$. Thus, the fractions $\frac{a+1}{b+2}$ and $\frac{c+1}{d+2}$ are added on either side of $\frac{1}{2}$ in the $(n+1)^{s} t$ row. We also have that $a+c=n-1$, and $(a+1)+(c+1)=n+1$.
If $n-1$ is even, then $\frac{a}{b} \leq 12 \frac{c}{d}$ and $b=d=n-2$. By Theorem $4, b+2=d+2=n$ is the smallest possible denominator for fractions between $\frac{a}{b}$ and $\frac{1}{2}$ and between $\frac{1}{2}$ and $\frac{c}{d}$. Thus, the fractions $\frac{a+1}{b+2}$ and $\frac{c+1}{d+2}$ are added on either side of $\frac{1}{2}$ in the $n^{t h}$ row. We also have that $a+c=n-1$, and $(a+1)+(c+1)=n+1$.

2 Approximating rational numbers

Here's another result that does not seem to immediately use Farey fractions:
Theorem 6 (Dirichlet's theorem, 1842). For all $x \in \mathbb{R}$ and $Q \in \mathbb{N}$, there exists $p / q \in \mathbb{Q}$ with $q \leq Q$ such that

$$
\begin{equation*}
\left|x-\frac{p}{q}\right|<\frac{1}{q Q} . \tag{1}
\end{equation*}
$$

In particular, if x is irrational, there exist infinitely many rational numbers p / q such that

$$
\begin{equation*}
\left|x-\frac{p}{q}\right|<\frac{1}{q^{2}} \tag{2}
\end{equation*}
$$

5. Show that if $\frac{p}{q} \neq \frac{5}{7}$, then

$$
\left|\frac{5}{7}-\frac{p}{q}\right| \geq \frac{1}{7 q}
$$

Formulate and prove a similar result where $\frac{5}{7}$ is replaced with an arbitrary rational number $\frac{r}{s}$. [Hint: What do we know if $\frac{5}{7}$ and $\frac{p}{q}$ are consecutive in some Farey sequence? What do we know if they are not?]

Solution: If $\frac{5}{7}$ and $\frac{p}{q}$ are consecutive in some Farey sequence, then $|5 p-7 q|=1$. Then

$$
\left|\frac{5}{7}-\frac{p}{q}\right|=\left|\frac{5 p-7 q}{7 q}\right|=\frac{1}{7 q} .
$$

If $\frac{5}{7}$ and $\frac{p}{q}$ are not consecutive in some Farey sequence, then there is some other $\frac{a}{b}$ between $\frac{5}{7}$ and $\frac{p}{q}$, so the difference is greater.

We can generalize the Farey sequence by removing the restriction "between 0 and 1 ." For example, the Farey sequence of order 2 becomes

$$
\ldots, \frac{-3}{1}, \frac{-5}{2}, \frac{-2}{1}, \frac{-3}{2}, \frac{-1}{1}, \frac{0}{1}, \frac{1}{2}, \frac{1}{1}, \frac{3}{2}, \frac{2}{1}, \ldots
$$

The same theorems are true in this case, except the number of elements is always infinite.
We can approximate an irrational number x using the following algorithm:
(i) Start with the interval $\left[\frac{n}{1}, \frac{n+1}{1}\right]$ where $n<x<n+1$
(ii) Compute the mediant of the endpoints of the interval.
(iii) Of the two new intervals, keep the one containing x. Go back to (ii) and repeat. This algorithm provides a sequence of mediants converging to x.
6. Here are 3 rational approximations of π, found using another method:

$$
3, \frac{22}{7}, \frac{333}{106}
$$

Compare this with the sequence you get by applying the Farey fraction algorithm 10 times. With π as a reference point, illustrate the sequence of mediants obtained on a number line.

Solution: We start with $\frac{3}{1}<\pi<\frac{4}{1}$. The first mediant approximation is then $\frac{7}{2}$.
Next, we get $\frac{3+7}{1+2}=\frac{10}{3}$, then $\frac{3+10}{1+3}=\frac{13}{4}, \frac{3+13}{1+4}=\frac{16}{5}, \frac{3+16}{1+5}=\frac{19}{6}, \frac{22}{7}, \frac{22+19}{7+6}=\frac{41}{13}, \frac{22+41}{7+13}=$ $\frac{63}{20}, \frac{22+63}{7+20}=\frac{85}{27}, \frac{85+22}{7+27}=\frac{107}{34}$.
The mediant approximation is less than π until it equals $\frac{22}{7}$, which takes 7 approximations (if you count 3, then it is greater than π. It turns out this will be true until the mediant approximation is $\frac{333}{106}$.

3 Some geometry

A lattice point is a point in the $x y$-plane where x and y are both integers.
7. Plot the line $x=\alpha y$ and the set of solutions to the inequality $\left|\alpha-\frac{x}{y}\right|<\frac{1}{y^{2}}$ in the $x y$-plane. What does Dirichlet's theorem say about lattice points in this "funnel?" How does the picture change when α is rational or irrational? Find all several lattice points (x, y) in the $x y$-plane such that $\left|\pi-\frac{x}{y}\right|<\frac{1}{y^{2}}$.

Solution: Dirichlet's theorem says there are infinitely many lattice points in the funnel when α is irrational. If α is rational, these points may be on the line $x=\alpha y$.

8. For each rational number $\frac{p}{q}$, draw a circle in the plane of radius $\frac{1}{2 q^{2}}$ with center $\left(\frac{p}{q}, \frac{1}{2 q^{2}}\right)$. Observe that the circles corresponding to consecutive terms in a Farey sequence are tangent, ie, touch at exactly one point. Explain why.

Solution: The circles intersect at exactly one point if and only if the distance between the centers is equal to the sum of the radii of the circles.
Let

$$
d^{2}=\left(\frac{c}{d}-\frac{a}{b}\right)^{2}+\left(\frac{1}{2 d^{2}}-\frac{1}{2 b^{2}}\right)^{2}=\frac{1}{b^{2} d^{2}}+\frac{1}{4 d^{4}}-\frac{1}{2 b^{2} d^{2}}+\frac{1}{4 b^{4}}=\frac{1}{4 d^{4}}+\frac{1}{2 b^{2} d^{2}}+\frac{1}{4 b^{4}},
$$

the square of the distance between the centers of the circles.
Let $s=\frac{1}{2 d^{2}}+\frac{1}{2 b^{2}}$ be the sum of the radii of the circles. So $s^{2}=\frac{1}{4 d^{4}}+\frac{1}{2 b^{2} d^{2}}+\frac{1}{4 b^{4}}=d^{2}$. Since the sum of the radii is equal to the distance between the centers, there is exactly one point on both circles.

