The subject of *Diophantine Approximation* concerns approximating real numbers with rational numbers. One way to do this is with *Farey fractions*-which we can generate by adding "wrong."

Definition of Farey sequences 1

One way to generate the Farey sequence is using a table. In the first row, write $\frac{0}{1}$ and $\frac{1}{1}$. To form the second row, copy the first row. Then insert $\frac{0+1}{1+1}$ between $\frac{0}{1}$ and $\frac{1}{1}$.

To form the n^{th} row, copy the $(n-1)^{st}$ row. Then for each $\frac{a}{b}$, $\frac{c}{d}$ in the (n-1) row, if $b+d \leq n$, insert $\frac{a+c}{b+d}$ between $\frac{a}{b}$ and $\frac{c}{d}$.

1. Here are the first four rows. Notice that the Here are the first four rows. Notice that the we did not include any values between $\frac{1}{3}$ and $\frac{1}{2}$ in row 4, since 2+3 > 4.

Fill in rows	5 an	d 6											
0						1	-						
$\overline{\underline{1}}$		1				1	-						
$\frac{0}{1}$		$\frac{1}{2}$				_ _	-						
$ \begin{array}{c} 1\\ 0 \end{array} $	1	$\frac{2}{1}$	2			1	-						
$\overline{1}$	$\overline{3}$	$\overline{2}$	$\overline{3}$			1	-						
$\underline{0}$ $\underline{1}$	1	1	2	3		1	-						
1 4	3	2	3	4		1	-						
	$\frac{0}{1}$				1							$\frac{1}{1}$	
	$\frac{\underline{0}}{\underline{1}}$		1		$\frac{1}{2}$		2					$\frac{1}{1}$	
Solution:	$\frac{\overline{1}}{0}$		$\frac{\overline{3}}{\underline{1}}$	$\frac{1}{2}$	$\overline{2}$	$\frac{1}{2}$	 	$\frac{2}{2}$	$\frac{3}{4}$			$\frac{1}{1}$	
	$\frac{1}{\frac{1}{1}}$	$\frac{1}{5}$	$\frac{4}{1}$	$\frac{3}{\frac{1}{2}}$	$\frac{2}{5}$	$\frac{1}{2}$	200 E	$\frac{32}{3}$	$\frac{4}{3}{4}$	$\frac{4}{5}$		$\frac{1}{1}$	
	$\frac{1}{1}$	$\frac{1}{6}$ $\frac{1}{5}$	$\frac{\overline{1}}{4}$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{\overline{1}}{2}$	$\frac{3}{5}$	$\frac{2}{3}$	$\frac{\overline{3}}{4}$	$\frac{4}{5}$	$\frac{5}{6}$	$\frac{1}{1}$	

Theorem 1. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive fractions in the n^{th} row of the table, with $\frac{a}{b}$ to the left of $\frac{c}{d}$, then bc - ad = 1.

- 2. The goal of the this question is to prove the theorem. We will do this using a technique called *induction*. First, we will show this is true for the first row. Then, we will show that if the theorem is true for the $(n-1)^{st}$ row, it is also true for the n^{th} row.
 - (a) Show that the theorem is true for the first row.
 - (b) Assume that for every pair of consecutive $\frac{a}{b}$ and $\frac{c}{d}$ in the $(n-1)^{st}$ row of the table, ad - bc = 1. Now, for a specific pair $\frac{a}{b}, \frac{c}{d}$ in the $(n-1)^{st}$ row, there are two cases for the n^{th} row. What are they?
 - (c) For each of the two cases, show that the theorem is true.

Solution:

- (a) There are only two elements of the first row. 1(1) 0(1) = 1.
- (b) If $b + d \leq n$, then we insert $\frac{a+c}{b+d}$ in between $\frac{a}{b}$ and $\frac{c}{d}$. Otherwise, $\frac{a}{b}$ and $\frac{c}{d}$ are also consecutive in the n^{th} row.
- (c) If $b + d \le n$, then we need to check the pairs $\frac{a}{b}, \frac{a+b}{b+d}$ and $\frac{a+b}{b+d}, \frac{c}{d}$. Now

$$b(a+c) - a(b+d) = bc - ad,$$

which is 1 by assumption. Similarly,

$$c(b+d) - d(a+b) = bc - ad.$$

In the other case, bc - ad = 1 by assumption.

Here are two corollaries and a theorem that you do not have to prove:

Corollary 2. Every $\frac{a}{b}$ in the table is in reduced form.

Corollary 3. The fractions in each row are listed in order from smallest to largest.

Theorem 4. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive fractions in any row, and $\frac{r}{s}$ is any rational number where $\frac{a}{b} < \frac{r}{s} < \frac{c}{d}$, then the smallest possible denominator for $\frac{r}{s}$ is b + d and $\frac{a+c}{b+d}$ is the only one with this denominator.

3. Use the induction and Theorem 4 to show:

Theorem 5. If $0 \le m \le n$ and m and n have no common factors, the fraction $\frac{m}{n}$ is in the n^{th} row of the table. Therefore, this table is equivalent to the definition: The N^{th} Farey sequence is the list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to N when written as a reduced fraction.

- (a) Show that the theorem is true for the first row.
- (b) The rule for adding an element to the table is: for each $\frac{a}{b}$, $\frac{c}{d}$ in the (n-1) row, if $b+d \leq n$, insert $\frac{a+c}{b+d}$ between $\frac{a}{b}$ and $\frac{c}{d}$. We call $\frac{a+c}{b+d}$ the mediant of $\frac{a}{b}$ and $\frac{c}{d}$. Assume Theorem 5 is true for the $(n-1)^{st}$ row. That is, the $(n-1)^{st}$ row is a list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to n-1 when written as a reduced fraction. How can this simplify the rule for adding an element to the table?
- (c) If b + d > n, $\frac{a+c}{b+d}$ is not in the n^{th} row of the table. Now we just need to prove that every fraction $\frac{m}{n}$ where m and n have no common factors is in the n^{th} row of the table. Do this.

Solution:

- (a) The first row of the table is $\{\frac{0}{1}, \frac{1}{1}\}$, which is all fractions between 0 and 1 with denominator 1.
- (b) Assume that the $(n-1)^{st}$ row is a list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to n-1 when written as a reduced fraction.

Let $\frac{a}{b}$ and $\frac{c}{d}$ be consecutive fractions in the $(n-1)^{st}$ row. If b + d < n, it is already in the table by assumption. So we only need b + d = n.

(c) Since $\frac{m}{n}$ is not in the $(n-1)^{st}$ row, it is between two consecutive Farey fractions $\frac{a}{b}$ and $\frac{c}{d}$. By Theorem 4, the smallest possible denominator for fractions between $\frac{a}{b}$ and $\frac{c}{d}$ is b+d and $\frac{a+c}{b+d}$ is the only one with this denominator. Since $\frac{a+c}{b+d}$ is not in the $(n-1)^{st}$ row, $b+d \ge n$. Since $\frac{a}{b}\frac{m}{n} < \frac{c}{d}$, $n \ge b+d$. Thus, b+d = n and $\frac{m}{n} = \frac{a+c}{b+d}$. Thus, $\frac{m}{n}$ is in the n^{th} row.

4. Let $\frac{a}{b}$ and $\frac{c}{d}$ be the fractions immediately to the left and right of $\frac{1}{2}$ in the n^{th} Farey sequence. Prove that b = d is the greatest odd integer less than or equal to n. Also prove a + c = b.

Solution: This is true for the second row $\{\frac{0}{1}, \frac{1}{2}, \frac{1}{1}\}$.

Assume this is true for the $(n-1)^{st}$ row. If n-1 is odd, then $\frac{a}{b} \leq 12\frac{c}{d}$ and b = d = n-1. By Theorem 4, b+2 = d+2 = n+1 is the smallest possible denominator for fractions between $\frac{a}{b}$ and $\frac{1}{2}$ and between $\frac{1}{2}$ and $\frac{c}{d}$. Thus, the fractions $\frac{a+1}{b+2}$ and $\frac{c+1}{d+2}$ are added on either side of $\frac{1}{2}$ in the $(n+1)^{st}$ row. We also have that a+c=n-1, and (a+1)+(c+1)=n+1.

If n-1 is even, then $\frac{a}{b} \leq 12\frac{c}{d}$ and b = d = n-2. By Theorem 4, b+2 = d+2 = n is the smallest possible denominator for fractions between $\frac{a}{b}$ and $\frac{1}{2}$ and between $\frac{1}{2}$ and $\frac{c}{d}$. Thus, the fractions $\frac{a+1}{b+2}$ and $\frac{c+1}{d+2}$ are added on either side of $\frac{1}{2}$ in the n^{th} row. We also have that a + c = n - 1, and (a + 1) + (c + 1) = n + 1.

2 Approximating rational numbers

Here's another result that does not seem to immediately use Farey fractions:

Theorem 6 (Dirichlet's theorem, 1842). For all $x \in \mathbb{R}$ and $Q \in \mathbb{N}$, there exists $p/q \in \mathbb{Q}$ with $q \leq Q$ such that

$$\left|x - \frac{p}{q}\right| < \frac{1}{qQ}.\tag{1}$$

In particular, if x is irrational, there exist infinitely many rational numbers p/q such that

$$\left|x - \frac{p}{q}\right| < \frac{1}{q^2}.\tag{2}$$

5. Show that if $\frac{p}{q} \neq \frac{5}{7}$, then

 $\left|\frac{5}{7} - \frac{p}{q}\right| \ge \frac{1}{7q}.$

Formulate and prove a similar result where $\frac{5}{7}$ is replaced with an arbitrary rational number $\frac{r}{s}$. [*Hint: What do we know if* $\frac{5}{7}$ and $\frac{p}{q}$ are consecutive in some Farey sequence? What do we know if they are not?]

Solution: If $\frac{5}{7}$ and $\frac{p}{q}$ are consecutive in some Farey sequence, then |5p - 7q| = 1. Then

$$\left|\frac{5}{7} - \frac{p}{q}\right| = \left|\frac{5p - 7q}{7q}\right| = \frac{1}{7q}.$$

If $\frac{5}{7}$ and $\frac{p}{q}$ are not consecutive in some Farey sequence, then there is some other $\frac{a}{b}$ between $\frac{5}{7}$ and $\frac{p}{q}$, so the difference is greater.

We can generalize the Farey sequence by removing the restriction "between 0 and 1." For example, the Farey sequence of order 2 becomes

$$\dots, \frac{-3}{1}, \frac{-5}{2}, \frac{-2}{1}, \frac{-3}{2}, \frac{-1}{1}, \frac{0}{1}, \frac{1}{2}, \frac{1}{1}, \frac{3}{2}, \frac{2}{1}, \dots$$

The same theorems are true in this case, except the number of elements is always infinite. We can approximate an irrational number x using the following algorithm:

- (i) Start with the interval $\left[\frac{n}{1}, \frac{n+1}{1}\right]$ where n < x < n+1
- (ii) Compute the mediant of the endpoints of the interval.
- (iii) Of the two new intervals, keep the one containing x. Go back to (ii) and repeat.

This algorithm provides a sequence of mediants converging to x.

6. Here are 3 rational approximations of π , found using another method:

$$3, \frac{22}{7}, \frac{333}{106}$$

Compare this with the sequence you get by applying the Farey fraction algorithm 10 times. With π as a reference point, illustrate the sequence of mediants obtained on a number line.

Solution: We start with $\frac{3}{1} < \pi < \frac{4}{1}$. The first mediant approximation is then $\frac{7}{2}$. Next, we get $\frac{3+7}{1+2} = \frac{10}{3}$, then $\frac{3+10}{1+3} = \frac{13}{4}, \frac{3+13}{1+4} = \frac{16}{5}, \frac{3+16}{1+5} = \frac{19}{6}, \frac{22}{7}, \frac{22+19}{7+6} = \frac{41}{13}, \frac{22+41}{7+13} = \frac{63}{20}, \frac{22+63}{7+20} = \frac{85}{27}, \frac{85+22}{7+27} = \frac{107}{34}.$

The mediant approximation is less than π until it equals $\frac{22}{7}$, which takes 7 approximations (if you count 3, then it is greater than π . It turns out this will be true until the mediant approximation is $\frac{333}{106}$.

3 Some geometry

A *lattice point* is a point in the xy-plane where x and y are both integers.

7. Plot the line $x = \alpha y$ and the set of solutions to the inequality $|\alpha - \frac{x}{y}| < \frac{1}{y^2}$ in the *xy*-plane. What does Dirichlet's theorem say about lattice points in this "funnel?" How does the picture change when α is rational or irrational? Find all several lattice points (x, y) in the *xy*-plane such that $|\pi - \frac{x}{y}| < \frac{1}{y^2}$.

8. For each rational number $\frac{p}{q}$, draw a circle in the plane of radius $\frac{1}{2q^2}$ with center $(\frac{p}{q}, \frac{1}{2q^2})$. Observe that the circles corresponding to consecutive terms in a Farey sequence are tangent, ie, touch at exactly one point. Explain why.

Solution: The circles intersect at exactly one point if and only if the distance between the centers is equal to the sum of the radii of the circles. Let

$$d^{2} = \left(\frac{c}{d} - \frac{a}{b}\right)^{2} + \left(\frac{1}{2d^{2}} - \frac{1}{2b^{2}}\right)^{2} = \frac{1}{b^{2}d^{2}} + \frac{1}{4d^{4}} - \frac{1}{2b^{2}d^{2}} + \frac{1}{4b^{4}} = \frac{1}{4d^{4}} + \frac{1}{2b^{2}d^{2}} + \frac{1}{4b^{4}},$$

the square of the distance between the centers of the circles.

Let $s = \frac{1}{2d^2} + \frac{1}{2b^2}$ be the sum of the radii of the circles. So $s^2 = \frac{1}{4d^4} + \frac{1}{2b^2d^2} + \frac{1}{4b^4} = d^2$. Since the sum of the radii is equal to the distance between the centers, there is exactly one point on both circles.
