The subject of Diophantine Approximation concerns approximating real numbers with rational numbers. One way to do this is with Farey fractions-which we can generate by adding "wrong."

1 Definition of Farey sequences

One way to generate the Farey sequence is using a table. In the first row, write $\frac{0}{1}$ and $\frac{1}{1}$.
To form the second row, copy the first row. Then insert $\frac{0+1}{1+1}$ between $\frac{0}{1}$ and $\frac{1}{1}$.
To form the $n^{\text {th }}$ row, copy the $(n-1)^{\text {st }}$ row. Then for each $\frac{a}{b}, \frac{c}{d}$ in the $(n-1)$ row, if $b+d \leq n$, insert $\frac{a+c}{b+d}$ between $\frac{a}{b}$ and $\frac{c}{d}$.

1. Here are the first four rows. Notice that the Here are the first four rows. Notice that the we did not include any values between $\frac{1}{3}$ and $\frac{1}{2}$ in row 4 , since $2+3>4$.
Fill in rows 5 and 6

0						$\frac{1}{1}$
$\overline{1}$						$\frac{1}{1}$
0			$\frac{1}{2}$			$\frac{1}{1}$
$\overline{1}$			$\overline{2}$			$\frac{1}{1}$
0		1	$\frac{1}{2}$	$\frac{2}{2}$		$\frac{1}{1}$
$\overline{1}$		$\overline{3}$	$\overline{2}$	$\overline{3}$		
0	1	1	1	2	3	$\frac{1}{7}$
$\overline{1}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\frac{1}{1}$

Theorem 1. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive fractions in the $n^{\text {th }}$ row of the table, with $\frac{a}{b}$ to the left of $\frac{c}{d}$, then $b c-a d=1$.
2. The goal of the this question is to prove the theorem. We will do this using a technique called induction. First, we will show this is true for the first row. Then, we will show that if the theorem is true for the $(n-1)^{\text {st }}$ row, it is also true for the $n^{\text {th }}$ row.
(a) Show that the theorem is true for the first row.
(b) Assume that for every pair of consecutive $\frac{a}{b}$ and $\frac{c}{d}$ in the $(n-1)^{s t}$ row of the table, $a d-b c=1$. Now, for a specific pair $\frac{a}{b}, \frac{c}{d}$ in the $(n-1)^{s t}$ row, there are two cases for the $n^{\text {th }}$ row. What are they?
(c) For each of the two cases, show that the theorem is true.

Here are two corollaries and a theorem that you do not have to prove:
Corollary 2. Every $\frac{a}{b}$ in the table is in reduced form.
Corollary 3. The fractions in each row are listed in order from smallest to largest.
Theorem 4. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive fractions in any row, and $\frac{r}{s}$ is any rational number where $\frac{a}{b}<\frac{r}{s}<\frac{c}{d}$, then the smallest possible denominator for $\frac{r}{s}$ is $b+d$ and $\frac{a+c}{b+d}$ is the only one with this denominator.
3. Use the induction and Theorem 4 to show:

Theorem 5. If $0 \leq m \leq n$ and m and n have no common factors, the fraction $\frac{m}{n}$ is in the $n^{\text {th }}$ row of the table. Therefore, this table is equivalent to the definition: The $N^{\text {th }}$ Farey sequence is the list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to N when written as a reduced fraction.
(a) Show that the theorem is true for the first row.
(b) The rule for adding an element to the table is: for each $\frac{a}{b}, \frac{c}{d}$ in the $(n-1)$ row, if $b+d \leq n$, insert $\frac{a+c}{b+d}$ between $\frac{a}{b}$ and $\frac{c}{d}$. We call $\frac{a+c}{b+d}$ the mediant of $\frac{a}{b}$ and $\frac{c}{d}$.
Assume Theorem 5 is true for the $(n-1)^{s t}$ row. That is, the $(n-1)^{s t}$ row is a list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to $n-1$ when written as a reduced fraction. How can this simplify the rule for adding an element to the table?
(c) If $b+d>n, \frac{a+c}{b+d}$ is not in the $n^{\text {th }}$ row of the table. Now we just need to prove that every fraction $\frac{m}{n}$ where m and n have no common factors is in the $n^{t h}$ row of the table. Do this.
4. Let $\frac{a}{b}$ and $\frac{c}{d}$ be the fractions immediately to the left and right of $\frac{1}{2}$ in the $n^{\text {th }}$ Farey sequence. Prove that $b=d$ is the greatest odd integer less than or equal to n. Also prove $a+c=b$.

2 Approximating rational numbers

Here's another result that does not seem to immediately use Farey fractions:
Theorem 6 (Dirichlet's theorem, 1842). For all $x \in \mathbb{R}$ and $Q \in \mathbb{N}$, there exists $p / q \in \mathbb{Q}$ with $q \leq Q$ such that

$$
\begin{equation*}
\left|x-\frac{p}{q}\right|<\frac{1}{q Q} . \tag{1}
\end{equation*}
$$

In particular, if x is irrational, there exist infinitely many rational numbers p / q such that

$$
\begin{equation*}
\left|x-\frac{p}{q}\right|<\frac{1}{q^{2}} . \tag{2}
\end{equation*}
$$

5. Show that if $\frac{p}{q} \neq \frac{5}{7}$, then

$$
\left|\frac{5}{7}-\frac{p}{q}\right| \geq \frac{1}{7 q}
$$

Formulate and prove a similar result where $\frac{5}{7}$ is replaced with an arbitrary rational number $\frac{r}{s}$. [Hint: What do we know if $\frac{5}{7}$ and $\frac{p}{q}$ are consecutive in some Farey sequence? What do we know if they are not?]

We can generalize the Farey sequence by removing the restriction "between 0 and 1 ." For example, the Farey sequence of order 2 becomes

$$
\ldots, \frac{-3}{1}, \frac{-5}{2}, \frac{-2}{1}, \frac{-3}{2}, \frac{-1}{1}, \frac{0}{1}, \frac{1}{2}, \frac{1}{1}, \frac{3}{2}, \frac{2}{1}, \ldots
$$

The same theorems are true in this case, except the number of elements is always infinite.
We can approximate an irrational number x using the following algorithm:
(i) Start with the interval $\left[\frac{n}{1}, \frac{n+1}{1}\right]$ where $n<x<n+1$
(ii) Compute the mediant of the endpoints of the interval.
(iii) Of the two new intervals, keep the one containing x. Go back to (ii) and repeat.

This algorithm provides a sequence of mediants converging to x.
6. Here are 3 rational approximations of π, found using another method:

$$
3, \frac{22}{7}, \frac{333}{106}
$$

Compare this with the sequence you get by applying the Farey fraction algorithm 10 times. With π as a reference point, illustrate the sequence of mediants obtained on a number line.

3 Some geometry

A lattice point is a point in the $x y$-plane where x and y are both integers.
7. Plot the line $x=\alpha y$ and the set of solutions to the inequality $\left|\alpha-\frac{x}{y}\right|<\frac{1}{y^{2}}$ in the $x y$-plane. What does Dirichlet's theorem say about lattice points in this "funnel?" How does the picture change when α is rational or irrational? Find all several lattice points (x, y) in the $x y$-plane such that $\left|\pi-\frac{x}{y}\right|<\frac{1}{y^{2}}$.
8. For each rational number $\frac{p}{q}$, draw a circle in the plane of radius $\frac{1}{2 q^{2}}$ with center $\left(\frac{p}{q}, \frac{1}{2 q^{2}}\right)$. Observe that the circles corresponding to consecutive terms in a Farey sequence are tangent, ie, touch at exactly one point. Explain why.

