The subject of *Diophantine Approximation* concerns approximating real numbers with rational numbers. One way to do this is with *Farey fractions*—which we can generate by adding "wrong."

## 1 Definition of Farey sequences

One way to generate the Farey sequence is using a table. In the first row, write  $\frac{0}{1}$  and  $\frac{1}{1}$ . To form the second row, copy the first row. Then insert  $\frac{0+1}{1+1}$  between  $\frac{0}{1}$  and  $\frac{1}{1}$ . To form the  $n^{th}$  row, copy the  $(n-1)^{st}$  row. Then for each  $\frac{a}{b}$ ,  $\frac{c}{d}$  in the (n-1) row, if  $b+d \leq n$ , insert  $\frac{a+c}{b+d}$  between  $\frac{a}{b}$  and  $\frac{c}{d}$ .

1. Here are the first four rows. Notice that the Here are the first four rows. Notice that the we did not include any values between  $\frac{1}{3}$  and  $\frac{1}{2}$  in row 4, since 2+3>4.

Fill in rows 5 and 6  $\,$ 

| 0              |                |                |                          |                          |                | 1              |
|----------------|----------------|----------------|--------------------------|--------------------------|----------------|----------------|
| $\overline{1}$ |                |                |                          |                          |                | $\frac{-}{1}$  |
| 0              |                |                | 1                        |                          |                | 1              |
| $\overline{1}$ |                |                | $\overline{2}$           |                          |                | $\frac{-}{1}$  |
| Ō              |                | 1              | $\bar{1}$                | 2                        |                | ī              |
| $\overline{1}$ |                | $\overline{3}$ | $\frac{\overline{2}}{1}$ | $\frac{-}{3}$            |                | $\frac{-}{1}$  |
| 0              | 1              | Ĭ              | $\bar{1}$                | $\frac{\overline{3}}{2}$ | 3              | $\bar{1}$      |
| $\overline{1}$ | $\overline{4}$ | $\overline{3}$ | $\overline{2}$           | $\overline{3}$           | $\overline{4}$ | $\overline{1}$ |

**Theorem 1.** If  $\frac{a}{b}$  and  $\frac{c}{d}$  are consecutive fractions in the  $n^{th}$  row of the table, with  $\frac{a}{b}$  to the left of  $\frac{c}{d}$ , then bc - ad = 1.

- 2. The goal of the this question is to prove the theorem. We will do this using a technique called *induction*. First, we will show this is true for the first row. Then, we will show that if the theorem is true for the  $(n-1)^{st}$  row, it is also true for the  $n^{th}$  row.
  - (a) Show that the theorem is true for the first row.
  - (b) Assume that for every pair of consecutive  $\frac{a}{b}$  and  $\frac{c}{d}$  in the  $(n-1)^{st}$  row of the table, ad-bc=1. Now, for a specific pair  $\frac{a}{b},\frac{c}{d}$  in the  $(n-1)^{st}$  row, there are two cases for the  $n^{th}$  row. What are they?
  - (c) For each of the two cases, show that the theorem is true.

Here are two corollaries and a theorem that you do not have to prove:

Corollary 2. Every  $\frac{a}{b}$  in the table is in reduced form.

Corollary 3. The fractions in each row are listed in order from smallest to largest.

**Theorem 4.** If  $\frac{a}{b}$  and  $\frac{c}{d}$  are consecutive fractions in any row, and  $\frac{r}{s}$  is any rational number where  $\frac{a}{b} < \frac{r}{s} < \frac{c}{d}$ , then the smallest possible denominator for  $\frac{r}{s}$  is b+d and  $\frac{a+c}{b+d}$  is the only one with this denominator.

## 3. Use the induction and Theorem 4 to show:

**Theorem 5.** If  $0 \le m \le n$  and m and n have no common factors, the fraction  $\frac{m}{n}$  is in the  $n^{th}$  row of the table. Therefore, this table is equivalent to the definition: The  $N^{th}$  Farey sequence is the list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to N when written as a reduced fraction.

- (a) Show that the theorem is true for the first row.
- (b) The rule for adding an element to the table is: for each  $\frac{a}{b}$ ,  $\frac{c}{d}$  in the (n-1) row, if  $b+d \leq n$ , insert  $\frac{a+c}{b+d}$  between  $\frac{a}{b}$  and  $\frac{c}{d}$ . We call  $\frac{a+c}{b+d}$  the mediant of  $\frac{a}{b}$  and  $\frac{c}{d}$ . Assume Theorem 5 is true for the  $(n-1)^{st}$  row. That is, the  $(n-1)^{st}$  row is a list of all fractions, written from smallest to largest, between 0 and 1 where the denominator is less than or equal to n-1 when written as a reduced fraction. How can this simplify the rule for adding an element to the table?
- (c) If b + d > n,  $\frac{a+c}{b+d}$  is not in the  $n^{th}$  row of the table. Now we just need to prove that every fraction  $\frac{m}{n}$  where m and n have no common factors is in the  $n^{th}$  row of the table. Do this.

4. Let  $\frac{a}{b}$  and  $\frac{c}{d}$  be the fractions immediately to the left and right of  $\frac{1}{2}$  in the  $n^{th}$  Farey sequence. Prove that b=d is the greatest odd integer less than or equal to n. Also prove a+c=b.

## 2 Approximating rational numbers

Here's another result that does not seem to immediately use Farey fractions:

**Theorem 6** (Dirichlet's theorem, 1842). For all  $x \in \mathbb{R}$  and  $Q \in \mathbb{N}$ , there exists  $p/q \in \mathbb{Q}$  with  $q \leq Q$  such that

$$\left| x - \frac{p}{q} \right| < \frac{1}{qQ}. \tag{1}$$

In particular, if x is irrational, there exist infinitely many rational numbers p/q such that

$$\left| x - \frac{p}{q} \right| < \frac{1}{q^2}. \tag{2}$$

5. Show that if  $\frac{p}{q} \neq \frac{5}{7}$ , then

$$\left|\frac{5}{7} - \frac{p}{q}\right| \ge \frac{1}{7q}.$$

Formulate and prove a similar result where  $\frac{5}{7}$  is replaced with an arbitrary rational number  $\frac{r}{s}$ . [Hint: What do we know if  $\frac{5}{7}$  and  $\frac{p}{q}$  are consecutive in some Farey sequence? What do we know if they are not?]

We can generalize the Farey sequence by removing the restriction "between 0 and 1." For example, the Farey sequence of order 2 becomes

$$\dots, \frac{-3}{1}, \frac{-5}{2}, \frac{-2}{1}, \frac{-3}{2}, \frac{-1}{1}, \frac{0}{1}, \frac{1}{2}, \frac{1}{1}, \frac{3}{2}, \frac{2}{1}, \dots$$

The same theorems are true in this case, except the number of elements is always infinite. We can approximate an irrational number x using the following algorithm:

- (i) Start with the interval  $[\frac{n}{1}, \frac{n+1}{1}]$  where n < x < n+1
- (ii) Compute the mediant of the endpoints of the interval.
- (iii) Of the two new intervals, keep the one containing x. Go back to (ii) and repeat.

This algorithm provides a sequence of mediants converging to x.

6. Here are 3 rational approximations of  $\pi$ , found using another method:

$$3, \frac{22}{7}, \frac{333}{106}$$

Compare this with the sequence you get by applying the Farey fraction algorithm 10 times. With  $\pi$  as a reference point, illustrate the sequence of mediants obtained on a number line.

## 3 Some geometry

A *lattice point* is a point in the xy-plane where x and y are both integers.

7. Plot the line  $x=\alpha y$  and the set of solutions to the inequality  $|\alpha-\frac{x}{y}|<\frac{1}{y^2}$  in the xy-plane. What does Dirichlet's theorem say about lattice points in this "funnel?" How does the picture change when  $\alpha$  is rational or irrational? Find all several lattice points (x,y) in the xy-plane such that  $|\pi-\frac{x}{y}|<\frac{1}{y^2}$ .

8. For each rational number  $\frac{p}{q}$ , draw a circle in the plane of radius  $\frac{1}{2q^2}$  with center  $(\frac{p}{q}, \frac{1}{2q^2})$ . Observe that the circles corresponding to consecutive terms in a Farey sequence are tangent, ie, touch at exactly one point. Explain why.

